Схема мельницы ветряной: Современная мельница. Устройство ветряной мельницы: схемы, чертежи

Содержание

Ветряные мельницы: устройство, применение, изготовление

Оглавление:
Ветряные мельницы: устройство и принцип работы
Ветряная мельница своими руками: для чего она может понадобиться
Как сделать ветряную мельницу своими руками: принцип изготовления

Ветряную мельницу человек знает давно и возможности ее использования на свое благо, можно сказать, изучил досконально. Лопасти, приводимые в движение силой ветра, передают вращающий момент к различным механизмам – если раньше они крутили исключительно жернова (от чего и пошло понятие ветряная мельница), то сегодня они вращают практически все что угодно, в том числе и электрогенераторы. Но суть не в этом – на сегодняшний день ветряная мельница, или, как ее еще называют, ветряк, является экологически чистым, а главное, условно бесплатным источником энергии. Только ради этого следует ознакомиться с устройством и принципом работы ветряной мельницы – именно этим мы и займемся в данной статье вместе с сайтом moyadacha.org.

Как работает ветряная мельница фото

Ветряные мельницы: устройство и принцип работы

Ветряная мельница, как и все гениальное, работает весьма просто – если говорить понятным языком, то посредством различных механизмов вращение пропеллера, приводимого в движение ветром, передается к устройству, выполняющему ту или иную работу. Если же усложнять все это дело, то конструкцию подобных агрегатов можно представить в виде трех различных узлов, собранных в едином корпусе. Кстати, корпус может быть весьма большим и иметь практически любую форму. Разберемся с этими узлами мельницы подробнее, а заодно и изучим ее принцип работы.

  1. Лопасти. Раньше они имели огромный размер – сегодня с развитием механики и прочих областей народного хозяйства винты ветряной мельницы могут быть весьма небольшого размера и производить при этом массу полезной работы. Вообще габариты пропеллера целиком и полностью зависят от необходимых усилий – чем больше вы хотите выжать мощность (не скорости) из ветра, тем длиннее должны быть лопасти.
    По этой причине мельницы, перерабатывающие зерно в муку, и оснащались такими большими лопастями – им попросту приходилось вращать тяжелые жернова, что довольно трудно. Во многом на эффективность работы мельницы оказывает влияние и форма лопастей – с появлением такой науки, как аэродинамика, и такого устройства, как аэродинамическая труба, человек разработал массу различных пропеллеров. По большому счету, существуют даже такие формы лопастей, которые при своих небольших размерах способны выполнять колоссальную работу.

    Механизм ветряной мельницы фото

  2. Система, передающая движение винта. Тут может быть много вариантов – вплоть до того, что вал, на который насажен винт, может вращать без всяких там вспомогательных шестерен рабочий механизм. Кто немного в курсе, понимает, что это не совсем правильно, так как минимум, что здесь должно быть, это редуктор, увеличивающий мощность или обороты. Ну а на счет механики и типа движения, то здесь все что угодно – вращение достаточно просто переделывается в поступательные движения и, соответственно, наоборот.
    Это к тому, что запустить от ветра можно практически любой агрегат.
  3. Механизм, производящий полезную работу. Здесь также много различных вариаций – устройство ветряной мельницы позволяет приводить в движение очень большой спектр различного оборудования, и о нем мы поговорим чуть позже – по большому счету, в старину от ветряков запускали даже станочное оборудование.

    Устройство ветряной мельницы фото

Как видите, работает ветряная мельница довольно просто, несмотря даже на сложность ее механической системы – в принципе, в самом простом исполнении ее конструкцию назвать сложной можно разве что с натяжкой. Основная проблема ее изготовления заключается только лишь в точности изготовления ее деталей – если осилите этот момент в домашних условиях, то все остальное покажется простым делом.

Ветряная мельница своими руками: для чего она может понадобиться

Как и говорилось выше, перерабатывая энергию ветра с помощью ветряной установки, запустить можно достаточно много полезных приспособлений. Но так уж сложилось, что используют их в современном мире сравнительно редко и запускают с их помощью считанное количество приспособлений. Мощность, габариты и зависимость от погоды – вот еще одна проблема, с которой необходимо считаться. И именно эта проблема накладывает некоторые ограничения на область применения ветряных мельниц в современном мире.

  1. Декор. Это, пожалуй, самое распространенное применение ветряной мельницы в современном мире – с их помощью декорируют загородные участки, имитируя тем самым старинный сельский стиль. Максимум функциональности у такой мельницы – это работа в качестве пугала для птичек на огороде, ну и для детворы развлечение. Ничего не имею против такого использования мельниц, но она может служить с куда большей пользой. К примеру, ее можно оборудовать маломощным генератором и, собрав на его основе мини электростанцию, освещать хотя бы небольшой участок сада.

    Ветряные мельницы фото

  2. Ветряные электростанции. Современные ветрогенераторы могут вырабатывать очень много энергии, но если говорить о небольшого размера мельницах, то здесь можно рассчитывать максимум на 100, может чуть больше ватт энергии. В принципе, если подключить к такой установке светодиодные лампы, то с их помощью можно будет осветить достаточно большую площадь участка. Спросите, а как быть, если ветра нет? В таких ситуациях энергия запасается в аккумуляторы, и использовать ее можно в любое время.

О том, как самостоятельно сделать декоративную ветряную мельницу, смотрите в этом видео.

Это, наверное, и все, на что могут сгодиться ветряные мельницы – по большому счету, этого достаточно. Зерно с их помощью точно никто перемалывать не станет и уж тем более никто не будет использовать их для работы сложных станков. Разве что в качестве развлечения.

Как сделать ветряную мельницу своими руками: принцип изготовления

Как вы уже поняли, изготовить своими руками можно практически любую ветряную мельницу, но следует понимать, что от ее назначения могут изменяться некоторые детали конструкции. К примеру, наличие в мельнице генератора электрической энергии потребует от вас выделить в корпусе специальное место для его установки. В целом же, решая вопрос, как сделать ветряную установку, вам придется изготовить как минимум две ее части – если говорить о функциональных мельницах, то и того больше.

  1. Корпус. Это, можно сказать, самая простая часть ветряной мельницы, которая, как правило, изготавливается из древесины – если быть более точным, то из досок. Как вариант, можно использовать фанеру – вырезая различные части корпуса ветряка лобзиком, ветряной мельнице можно придать практически любые формы и размеры. Здесь, как говорится, дело за вашей фантазией и умением конструировать. Другие материалы для изготовления корпуса мельницы лучше не использовать – либо обойдется дороже, либо прослужит не долго. Даже в случае с древесиной понадобится позаботиться о дополнительной защите – в общем, корпус нужно будет покрасить. Как вариант, для изготовления мельницы, а вернее ее корпуса, можно использовать кирпич или натуральный камень – использование этих материалов будет рациональным только в случае строительства большой мельницы.
  2. Лопасти. Это самая сложная часть ветряной установки, от которой зависит ее эффективность – это если, конечно, говорить о функциональном изделии данного типа – если вести речь о декоре, то форме и конфигурации лопастей внимания можно особе не уделять. Изготовить лопасти для ветряной мельницы проще всего из двух типов материала – это все та же древесина, с которой придется изрядно повозиться в случае полноценной рабочей установки (декор делается просто, без всяких заморочек) или же пластиковая канализационная труба. С ее помощью изготовить лопасти рабочего вентилятора очень просто, самое главное здесь – правильно раскроить трубу.

    Ветряная мельница своими руками фото

  3. Энергетическая установка. Несмотря на то, что энергетическая установка выглядит довольно сложно, собрать ее своими руками весьма легко. Для этого дела понадобится три основных элемента – это генератор, на вал которого нужно будет установить изготовленные ранее лопасти, аккумуляторы, которые необходимы для запасания энергии и так называемый инвертор-преобразователь, в задачи которого входит преобразование постоянного тока с напряжением 12 или 24 вольта в переменное напряжение 220V.
    Все это придется купить, после чего вам останется только правильно собрать схему – она элементарная и разобраться с ней сможет практически каждый человек, который хотя бы немного понимает в электричестве. Как вариант, от использования инвертора можно отказаться вообще – освещать некоторые участки сада можно и оборудованием на 12V.

В заключение темы про ветряные мельницы скажу несколько слов о подобных установках, только гидравлического принципа действия – в смысле, водяной мельницы. Это не менее популярный дачный декор, который, как и в случае с ветряком, может даже приносить пользу – это, конечно, если ваш дачный участок расположен на берегу тихой речушки. В таком случае водяные мельницы могут не только вырабатывать электроэнергию, но и качать воду для полива. В общем, на этот агрегат тоже нужно обратить внимание – возможно и для вас он окажется весьма полезной вещью, которую при желании также можно достаточно просто изготовить своими руками.

Ветряная мельница своими руками

Главная » Дизайн » Ветряная мельница своими руками

Эстетичная и грациозная ветряная мельница на участке может быть не только украшением, но и приносить практическую пользу в том случае, если к её конструированию подойти с умом. Фото ветряков, которые представлены на странице, безусловно, порадуют глаз, тем не менее едва ли кто-то будет их строить для помола муки. Сегодня для этого есть более технологичные устройства, но ветряная мельница привлекает не только эффектным внешним видом.

Содержание:

  1. Кинетическая скульптура или практическая польза?
  2. Для чего строить мельницу
  3. Ветрогенератор из мельницы
  4. Строим декоративную мельницу самостоятельно

Кинетическая скульптура или практическая польза?

Ветряная мельница своими руками — это великолепный элемент ландшафтного дизайна, который сделает дачный участок неповторимым. Вместе с тем, декоративная мельница может приносить и практическую пользу в том числе, как электрогенератор. Основная задача любой мельницы — это преобразование энергии ветра в любой другой вид энергии, механическую, электрическую, которые могут быть направлены на что угодно.

К примеру, установив мельницу неподалёку от огорода, можно успешно отпугивать кротов и птиц. С птицами понятно, но и кротов можно отвадить от грядки. Для этого необходимо вкопать каркас мельницы в грунт на глубину 25-30 см и просто передать вибрацию от вращающегося ротора на каркас. Вибрация будет распространяться в грунте, тем самым отпугивая кротов.

Для чего строить мельницу

Кроме этого мельницу можно приспособить под массу других полезных функций:

  • если на участке есть объект, который неплохо было бы скрыть от посторонних глаз, к примеру, канализационный люк или дренажная ревизия, декоративная ветряная мельница успешно с этим справится;

  • компактный и лёгкий ветряк можно использовать как защитный колпак для вентиляционных труб;

  • небольшая сказочная мельница может стать центровым объектом на детской площадке для игр, в этом случае, правда, придётся позаботиться о безопасности и прочности конструкции в первую очередь;

  • ветряная мельница солидных размеров может быть использована, как подсобное помещение для круглогодичного хранения садового инвентаря;

  • если построить основание мельницы из камня, она может служить отличным стильным мангалом;

  • если применить чертежи и схемы, расположенные ниже, ветряная мельница может обеспечивать электричеством хотя бы уличные источники света круглый год;

  • мельница может быть использована в качестве насоса для воды.

Да и это далеко не все, на что способна казалось бы исключительно декоративная кинетическая композиция.

Ветрогенератор из мельницы

Самый очевидный вариант использования силы ветра — преобразование его энергии в электричество. Однако приступая к работам в этом направлении, слишком обнадёживаться не стоит. Дело в том, что любой самый эффективный ветрогенератор имеет КПД не более 60%. С другой стороны, эту энергию мы получаем абсолютно бесплатно, поэтому есть смысл хотя бы попробовать сэкономить на покупке электричества у государства.

Максимальная мощность, которую дарит ветер, просто вычислить по формуле — площадь лопасти, на которую воздействует ветер, умножается на скорость ветра в третьей степени, а результат умножается на коэффициент полезного действия, в нашем случае — 0,6. Несложно вычислить, что при средней скорости ветра в два метра в секунду и площади лопастей в 1 квадратный метр, эффективная мощность генератора будет не более 5 Вт. Слабовато. Но уже при скорости от 8м/с можно получить на выходе с генератора около трехсот Вт с квадратного метра площади.

Конечно, это не сравнится с показателями дорогих ветрогенераторов импортного производства, которые могут стоить от 4 тысяч евро и выдавать номинальную мощность от 1,5 кВт. Но перед тем как вкладывать деньги в дорогой ветрогенератор, стоит познакомится со сводками о скорости и направлении ветра в конкретном регионе за несколько прошедших лет. Может получиться так, что генератор себя не окупит вовсе.

Строим декоративную мельницу самостоятельно

Одной из основных задач при постройке ветряной мельницы будет выбор места для её установки. Желательно, чтобы мельница находилась на возвышении, если её лопасти должны вращаться, а также лучше устанавливать конструкцию вдали от основных дачных построек. Как ни крути, а мельница будет шуметь при работе. Для деревянной конструкции необязательно устраивать прочный надёжный фундамент, будет достаточно основания из бруса или бревна.

Чертежи, которые размещены на странице, просто показывают пропорции конструкции, а реальные размеры стоит вписывать в конкретный ландшафт. Форма лопастей для мельницы может быть произвольной, но минимальный угол отклонения от направления движения ветра должен соблюдаться, также стоит минимизировать вес лопастей и оси, на которую они будут закреплены.

Фантазия и смекалка помогут выполнить работу быстро и качественно, на вашем участке вырастет необычная и, возможно, функциональная конструкция. Удачной работы и творческого настроения!

Как работает ветряная турбина — текстовая версия

Сила ветра

Ветряные турбины используют ветер — чистый, бесплатный и широко доступный возобновляемый источник энергии — для выработки электроэнергии. На этой странице представлена ​​текстовая версия интерактивной анимации: Как работает ветряная турбина.

Как работает ветряная турбина

Ветряная турбина преобразует энергию ветра в электричество за счет аэродинамической силы лопастей ротора, которые работают как крыло самолета или лопасти винта вертолета. Когда ветер обдувает лопасть, давление воздуха на одной стороне лопасти уменьшается. Разница в давлении воздуха по обеим сторонам лопасти создает как подъемную силу, так и сопротивление. Подъемная сила больше, чем сопротивление, и это заставляет ротор вращаться. Ротор соединяется с генератором либо напрямую (если это турбина с прямым приводом), либо через вал и ряд шестерен (редуктор), которые ускоряют вращение и позволяют уменьшить физически размер генератора. Этот перевод аэродинамической силы во вращение генератора создает электричество.

Как работает ветряная электростанция

Ветряные электростанции производят электроэнергию за счет множества ветряных турбин, расположенных в одном месте. На размещение ветряной электростанции влияют такие факторы, как ветровые условия, окружающая местность, доступ к линиям электропередач и другие факторы размещения. На ветряной электростанции коммунального масштаба каждая турбина вырабатывает электроэнергию, которая поступает на подстанцию, где затем передается в сеть, где питает наши сообщества.

Передача инфекции

Линии электропередач передают электричество высокого напряжения на большие расстояния от ветряных турбин и других генераторов энергии в районы, где эта энергия необходима.

Трансформеры

Трансформаторы получают электроэнергию переменного тока при одном напряжении и повышают или понижают напряжение для подачи электроэнергии по мере необходимости. Ветряная электростанция будет использовать повышающий трансформатор для повышения напряжения (таким образом, уменьшая требуемый ток), что снижает потери мощности, возникающие при передаче больших токов на большие расстояния по линиям электропередач. Когда электричество достигает сообщества, трансформаторы снижают напряжение, чтобы сделать его безопасным и пригодным для использования зданиями и домами в этом сообществе.

Подстанция

Подстанция соединяет систему передачи с системой распределения, которая поставляет электроэнергию населению.

Внутри подстанции трансформаторы преобразуют электроэнергию с высокого напряжения в более низкое напряжение, которое затем может быть безопасно доставлено потребителям электроэнергии.

Башня ветряной турбины

Изготовленная из трубчатой ​​стали, башня поддерживает конструкцию турбины. Башни обычно состоят из трех секций и собираются на месте. Поскольку скорость ветра увеличивается с высотой, более высокие башни позволяют турбинам захватывать больше энергии и генерировать больше электроэнергии. Ветры на высоте 30 метров (примерно 100 футов) и выше также менее турбулентны.

Направление ветра

Определяет конструкцию турбины. Ветряные турбины, подобные показанной здесь, обращены к ветру, а подветренные — в сторону. Большинство наземных ветряных турбин коммунального масштаба являются ветряными турбинами.

Флюгер

Флюгер измеряет направление ветра и сообщается с приводом рыскания, чтобы правильно ориентировать турбину относительно ветра.

 

 

 

Анемометр

Анемометр измеряет скорость ветра и передает данные о скорости ветра на контроллер.

Лезвия

Большинство турбин имеют три лопасти, изготовленные в основном из стекловолокна. Лопасти турбин различаются по размеру, но типичная современная наземная ветряная турбина имеет лопасти длиной более 170 футов (52 метра). Самая большая турбина — морская ветряная турбина GE Haliade-X с лопастями длиной 351 фут (107 метров) — примерно такой же длины, как футбольное поле. Когда ветер обдувает лопасть, давление воздуха на одной стороне лопасти уменьшается. Разница в давлении воздуха по обеим сторонам лопасти создает как подъемную силу, так и сопротивление. Подъемная сила больше, чем сопротивление, и это заставляет ротор вращаться.

Наземная турбина с редуктором

Трансмиссия турбины с редуктором состоит из ротора, главного подшипника, главного вала, редуктора и генератора. Трансмиссия преобразует низкоскоростное вращение ротора турбины (лопасти и узел ступицы) с высоким крутящим моментом в электрическую энергию.

Гондола

Гондола находится на вершине башни и содержит редуктор, низкоскоростные и высокоскоростные валы, генератор и тормоз. Некоторые гондолы больше дома и для турбины с редуктором мощностью 1,5 МВт могут весить более 4,5 тонн.

Система рыскания

Привод рыскания поворачивает гондолу на ветряных турбинах, чтобы они оставались обращенными к ветру при изменении направления ветра. Для этого двигатели рыскания приводят в действие привод рыскания.

Ветряные турбины не требуют привода рыскания, потому что ветер вручную уносит ротор от него.

Система подачи

Система шага регулирует угол наклона лопастей ветряной турбины по отношению к ветру, контролируя скорость вращения ротора. Регулируя угол наклона лопастей турбины, система шага определяет, сколько энергии могут извлекать лопасти. Система шага также может «раскачивать» лопасти, регулируя их угол, чтобы они не создавали силы, которая могла бы вызвать вращение ротора. Оперение лопастей замедляет ротор турбины, чтобы предотвратить повреждение машины, когда скорость ветра слишком высока для безопасной работы.

Центр

Часть трансмиссии турбины, лопасти турбины входят в ступицу, соединенную с главным валом турбины.

Коробка передач

Трансмиссия состоит из ротора, главного подшипника, главного вала, редуктора и генератора. Трансмиссия преобразует низкоскоростное вращение ротора турбины (лопасти и узел ступицы) с высоким крутящим моментом в электрическую энергию.

Ротор

Лопасти и ступица вместе образуют ротор турбины.

Тихоходный вал

Часть трансмиссии турбины, низкоскоростной вал соединен с ротором и вращается со скоростью 8–20 оборотов в минуту.

Подшипник главного вала

Часть трансмиссии турбины, главный подшипник поддерживает вращающийся низкоскоростной вал и уменьшает трение между движущимися частями, чтобы силы от ротора не повреждали вал.

Высокоскоростной вал

Часть трансмиссии турбины, высокоскоростной вал соединяется с коробкой передач и приводит в движение генератор.

Генератор

Генератор приводится в движение высокоскоростным валом. Медные обмотки вращаются через магнитное поле в генераторе для производства электроэнергии. Некоторые генераторы приводятся в действие редукторами (показанными здесь), а другие представляют собой прямые приводы, в которых ротор присоединяется непосредственно к генератору.

Контроллер

Контроллер позволяет запускать машину при скорости ветра около 7–11 миль в час (миль в час) и выключает машину, когда скорость ветра превышает 55–65 миль в час. Контроллер выключает турбину при более высоких скоростях ветра, чтобы избежать повреждения различных частей турбины. Думайте о контроллере как о нервной системе турбины.

Тормоз

Турбинные тормоза не похожи на автомобильные тормоза. Тормоз турбины удерживает ротор от вращения после того, как он был отключен системой шага. Как только лопасти турбины останавливаются контроллером, тормоз удерживает лопасти турбины в неподвижном состоянии, что необходимо для технического обслуживания.

Морская ветряная турбина с прямым приводом

Турбины с прямым приводом упрощают системы гондол и могут повысить эффективность и надежность за счет устранения проблем с коробкой передач. Они работают, соединяя ротор напрямую с генератором для выработки электроэнергии.

Морской флюгер и анемометр с прямым приводом

Флюгер измеряет направление ветра и взаимодействует с приводом рыскания, чтобы правильно ориентировать турбину относительно ветра.

Анемометр измеряет скорость ветра и передает данные о скорости ветра на контроллер.

Система рыскания с прямым приводом

Электродвигатели рыскания приводят в действие привод рыскания, который вращает гондолы ветряных турбин, чтобы они оставались обращенными к ветру при изменении направления ветра.

Лопасти генератора с прямым приводом

Большинство турбин имеют три лопасти, изготовленные в основном из стекловолокна. Когда ветер обдувает лопасть, давление воздуха на одной стороне лопасти уменьшается. Разница в давлении воздуха по обеим сторонам лопасти создает как подъемную силу, так и сопротивление. Подъемная сила больше, чем сопротивление, и это заставляет ротор вращаться. Лопасти турбины GE Haliade X имеют длину 351 фут (107 метров) — примерно такую ​​же длину, как футбольное поле!

Система шага с прямым приводом

Система шага регулирует угол наклона лопастей ветряной турбины по отношению к ветру, контролируя скорость вращения ротора. Регулируя угол наклона лопастей турбины, система шага определяет, сколько энергии могут извлекать лопасти. Система шага также может «раскачивать» лопасти, регулируя их угол, чтобы они не создавали силы, которая могла бы вызвать вращение ротора. Оперение лопастей замедляет ротор турбины, чтобы предотвратить повреждение машины, когда скорость ветра слишком высока для безопасной работы.

Концентратор прямого привода

Лопасти турбины вставляются в ступицу, соединенную с генератором турбины.

Ротор с прямым приводом

Лопасти и ступица вместе образуют ротор турбины.

Генератор с прямым приводом

Генераторы с прямым приводом не используют редуктор для выработки электроэнергии. Они генерируют энергию, используя гигантское кольцо постоянных магнитов, которые вращаются вместе с ротором, производя электрический ток, проходя через стационарные медные катушки. Большой диаметр кольца позволяет генератору создавать большую мощность при вращении с той же скоростью, что и лопасти (8–20 оборотов в минуту), поэтому ему не нужен редуктор, чтобы разогнать его до тысяч оборотов. в минуту требуют другие генераторы.

Контроллер прямого привода

Контроллер позволяет запускать машину при скорости ветра около 7–11 миль в час (миль в час) и выключает машину, когда скорость ветра превышает 55–65 миль в час. Контроллер выключает турбину при более высоких скоростях ветра, чтобы избежать повреждения различных частей турбины. Думайте о контроллере как о нервной системе турбины.

Тормоз с прямым приводом

Турбинные тормоза — это не автомобильные тормоза. Тормоз турбины удерживает ротор от вращения после того, как он был отключен системой шага. Как только лопасти турбины останавливаются контроллером, тормоз удерживает лопасти турбины в неподвижном состоянии, что необходимо для технического обслуживания.

Подшипник ротора прямого привода

Подшипник ротора поддерживает основной вал и уменьшает трение между движущимися частями, чтобы силы от ротора не повреждали вал.

Узнайте больше об энергии ветра

Как работают ветряные турбины?

Изучите основы работы ветряных турбин для производства чистой энергии из обильного возобновляемого ресурса — ветра.

Узнать больше

Основы ветроэнергетики

Узнайте больше о ветроэнергетике здесь, от принципа работы ветряной турбины до новых захватывающих исследований в области ветровой энергии.

Узнать больше

History of U.S. Wind Energy

На протяжении всей истории использование энергии ветра то возрастало, то уменьшалось, от использования ветряных мельниц в прошлые века до высокотехнологичных ветряных турбин на ветряных электростанциях сегодня. ..

Узнать больше

Сколько мощности составляет 1 гигаватт?

Дата, которую большинство любителей кино знает наизусть, 21 октября 2015 года — это день, когда Марти МакФлай и Док Браун путешествуют в «Назад в будущее, часть 2».

Узнать больше

Как работает ветряная турбина — схема и руководство

Изучить принцип работы ветряной турбины  легко, если вы сначала убедитесь, как работает турбогенератор.

Схема ветряной турбины вверху представляет собой вид сбоку ветряной турбины с горизонтальной осью и лопастями турбины слева. Большинство современных ветряных турбин построены с горизонтальной осью, подобной той, что показана на рисунке.

На рисунке также показана обычная ветряная турбина, а это означает, что для эффективной работы турбины нос и лопасти турбины должны быть обращены к ветру.

Чтобы узнать больше о том, как работают ветряные турбины, можно начать с рассмотрения приведенной выше схемы и изучения каждого компонента ветряной турбины.

Пошаговый просмотр каждой части ветряной турбины на приведенной выше схеме:

(1)  Обратите внимание на рисунок, что направление ветра дует вправо и в носовую часть ветряной турбины сталкивается с ветром.

(2)   Носовая часть ветряной турбины имеет аэродинамическую конструкцию и обращена к ветру.

(3)  Лопасти ветряной турбины крепятся к носу и ротору и начинают вращаться при достаточной скорости ветра.

(4) Главный вал турбины соединяет вращающиеся лопасти с внутренними механизмами машины. Вал турбины вращается вместе с лопастями и является механизмом, передающим вращательную/механическую энергию лопастей электрическому генератору.

(5)  A тормоз устанавливается для предотвращения механических повреждений от сильного ветра и высоких скоростей вращения. Он также может останавливать турбину, когда в ней нет необходимости.

(6) Редуктор используется для увеличения скорости вращения вала турбины. Коробка передач работает как шестерня на велосипеде, когда шестерни меняются, скорость вращения тоже меняется. Затем он передает энергию вращения на вал высокоскоростной турбины и на генератор.

(7)   9Вал высокоскоростной турбины 0274 соединяет коробку передач и генератор. Высокие скорости вращения — это то, что вращает турбогенератор.

(8) Турбогенератор является наиболее важной частью работы ветряной турбины. Турбогенератор — это то, что преобразует механическую энергию ветра в электрическую энергию, используя вращающую силу, которая передается от зубчатых колес и вала турбины.

(9)   Анемометр  – устройство, измеряющее скорость ветра. Обычно они устанавливаются, чтобы дать контроллеру команду остановить или запустить турбину при определенных условиях скорости ветра.

(10) Контроллер устанавливается на случай, если скорость ветра достигает нежелательной скорости, анемометр может дать указание контроллеру использовать тормоз и остановить вращающиеся лопасти. Контроллер также используется для запуска вращения лопастей и ротора при низких скоростях ветра.

(11)   флюгер — прибор для измерения направления ветра. Флюгер важен для направленных вверх ветряных турбин, которые должны быть обращены к ветру, чтобы работать должным образом.

(12)   Привод рыскания в механизме, который получает данные от флюгера и дает команду ветряной турбине повернуться лицом к ветру.

(13)  Двигатель рыскания — это устройство, которое физически поворачивает турбину так, чтобы она была направлена ​​против ветра или в соответствии с указаниями привода рыскания.

(14)   Башня турбины содержит электропроводку, поэтому генератор может подавать электроэнергию в трансформатор или аккумулятор, который в конечном итоге распределяет полезную электроэнергию. Башня также является важной структурной опорной системой, которая удерживает турбину высоко в воздухе, где скорость ветра более желательна.

(15) Ветряная турбина хорошо работает на открытом воздухе и при сильных ветрах благодаря тому, что все компоненты установлены наверху башни турбины и надежно размещены внутри турбины гондола . Башня и гондола ветряной турбины обычно изготавливаются из цилиндрической стали и могут поддерживаться растяжками и растяжками или стоять отдельно, используя решетчатое стоячее основание.

Опять же, на этой диаграмме показан пример ветряной турбины с горизонтальной осью, направленной против ветра, которая может быть сделана из стали и иметь высоту в несколько этажей. То, как работает ветряная турбина, требует не только тщательного проектирования, но и вдумчивого анализа и стратегии, чтобы найти желаемые места с достаточной скоростью ветра.

Сколько энергии производят ветряные турбины?

В 1919 году немецкий физик Альберт Бетц обнаружил, что ни один ветряной двигатель не может физически улавливать более 59,3% кинетической энергии ветра. Простой способ объяснить это состоит в том, что если бы ветряная турбина когда-либо захватывала 100% ветра, через другую сторону лопастей ветряной турбины не проходил бы ветер. Если нет ветра, проходящего с другой стороны, то, согласно физическому закону движения ветра, больше не будет места для прохождения ветра через переднюю часть ветряной турбины, что сделает ветряную турбину бесполезной.

Итак, для расчета выработки ветровой энергии или количества ветровой электроэнергии, которое, как ожидается, будет произведено ветровой турбиной, вам потребуется краткий список зависимых переменных:

                     ( Cp ) – коэффициент полезного действия турбины, максимум 0,593

                              ( ρ )  –  Плотность воздуха, измеренная в фунтах на кубический фут

                       0262 ( V ) — скорость ветра, мили/час

( K ) — K — постоянная, которая равна 0,000133, это покрывает ответ на киловатты

( P ) хотите рассчитать, в киловаттах

С приведенными выше переменными уравнение для расчета ветровой электрической мощности ветровой турбины:

P = k * Cp * (1/2) * ρ * A * (V^3 )

Обратите внимание на взаимосвязь каждой переменной в уравнении и на то, как она связана с работой ветряной турбины. Площадь лопасти ротора (A) имеет прямую положительную зависимость от выходной мощности, а скорость ветра (v) имеет положительную кубическую зависимость от выходной мощности.

Количество электроэнергии, которое может генерировать ветряная турбина, в основном зависит от размера турбины, площади, охватываемой лопастями турбины, плотности воздуха и скорости ветра. Общая конструкция ветряной турбины также имеет решающее значение для того, насколько эффективно лопасти могут захватывать ветер.

Меньшие ветряные турбины, используемые для лодок, караванов или небольших машин, обычно производят от 250 Вт до 100 киловатт ветровой электроэнергии. Некоторые из самых больших ветряных турбин в мире производят около 7 мегаватт электроэнергии.

Важно помнить, что скорость ветра непостоянна, поэтому теоретическая мощность электроэнергии, которую может производить ветряная турбина, представляет собой максимальный потенциал выработки энергии, который редко достигается.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *